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Abstract 
 
We replace the imaginary unit ( i ) in the Schrödinger equation with CUT-( i ), (e.i. Eigen-knot 

) a geometric rotate-lift operator defined (“Eigen-knot Prime”: )  on 
self-intersecting spindle tori:  (( R=10 ), ( r=15.85 )). 
 
Meaning & Design Rationale: 
Symbol 
Interpretation 

 
Represents the closed toroidal loop and self-intersection  

 
Bullet at the center marks the topological self-intersection point — the source of tension resolved 
by V-lift 

 
Prime indicates V-lift resolution — the 4D extension via CUT-$(i)$ 

Standard ( i ) generates oscillatory probability waves in ; CUT-( i ) induces deterministic 
4D flow—rotation in ( (x,y) ) coupled with radial-proportional lift into a perceptual dimension ( 
V ). The resulting Geometric Schrödinger Equation (GSE) evolves toroidal states via damped 
helical swarms, eliminating wavefunction collapse, superposition, and intrinsic randomness. 
Probability emerges statistically from bounded V-spreads. Numerical simulation of entangled 

torus pairs (60×60 grid, 50 ps,  yields , 
correlation ( r = 1.000000 ), confirming perfect V-synchronization. Lyapunov stability ensures 

 
 
 



 

equilibrium: . Ties to protein folding (alanine dipeptide: ( E to -624 ) kJ/mol, 
helical layering) and perception-geometric unification in Organic Earth II are demonstrated. 
 
 
 

1. Introduction 
 
The Schrödinger equation, 
 
 

, 
 
 

relies on  to generate unitary evolution in complex Hilbert space. This yields 
interference, uncertainty, and collapse—features criticized as incomplete [1]. In C.U.T. Physics, 

we abandon  for 4D geometric algebra on spindle tori. The Eigen-knot (major radius ( 
R=10 ), minor radius ( r=15.85 ) self-intersects, inducing topological tension resolved by V-lift 
under CUT-( i ). 
 
CUT-( i ) acts as: 
 
 

 
 
 
with inverse: 
 
 

 
 

Here,  is the lift coefficient, ( k > 0 ) damping. No ( i2 = -1 ): two 
applications yield: 

 
 
 



 

 
 

 
 
 
Rotation preserves radius; lift is additive. Continuous flow follows the ODE system: 
 
 

 
 
 

Equilibrium: . Lyapunov function , 

, ensures global stability. 
 
 
 

2. Deriving the Geometric Schrödinger Equation 
 

Let  be a toroidal density field over the Eigen-knot, normalized via 

swarm volume in ( V ). Replace  with CUT-( i ) flow operator : 
 
 

. 
 
 

 
 
 



 

The Hamiltonian  acts in 3D. Full GSE: 
 
 

 
 
Component-wise: 
 
 

 
 
 
The V-equation decouples time evolution from lift/drag: 
 
 

. 
 
 

Solution: . With 

, density exponentially localizes to equilibrium torus 
layer—no collapse, just geometric focusing. 
 
 
 
 
 



 

 

3. Unitary Evolution and Conservation 
 

Standard unitarity:  via . In CUT: 
 

- Rotation block is , orthogonal. 
- Lift/damping conserves "swarm count" via continuity: 
 
 

 
 
 

Integrate over 4D volume:  if  is density. Norm preserved in 
toroidal measure. 
 

Energy: Expectation  decreases under damping, stabilizes at potential minimum. 
Alanine dipeptide MD (OpenMM, 65 ns) confirms: ( E to -624 ) kJ/mol, ( Rg: 5.6 \to 4.5 ) Å, 
helix fraction >0.1. 
 
 
 

4. EPR Resolution via V-Fiber Coupling 
 
Consider two entangled tori, separated by ( L = 1000 ). Initial phase lock: 

. Add neighbor coupling : 
 
 

 
 
 

Analytic solution (assume ): 

 
 
 



 

 

Let : 
 
 

 
 
 

With ,perfect synchronization:  for all ( t ). 
 

 
 
 



 

 

 
 
 



 

 

Numerical validation: Full 4D torus swarm integration (60×60 grid, 50 ps, ) 

yields , correlation coefficient ( r = 1.000000 ). See 
Figs.~\ref{fig:cut_epr_A}, \ref{fig:cut_epr_B}, \ref{fig:cut_epr_sync}. 
 

Measurement on A (fix local ( uA )) → predicts  via phase offset and 

. 
 
No non-locality: Coupling is local in V-space, global in 3D. EPR correlation arises from shared 
geometric fiber. 
 
 

5. Discussion and Implications 
 
| Feature | Standard QM | C.U.T. (GSE) | 
|----------|------------------|------------------| 

| ( i ) |       |Rotate-lift:  | 
| Evolution | Oscillatory | Damped helical flow | 
| Collapse | Yes | No—geometric stabilization | 
| Probability | Intrinsic | Swarm statistics | 
| EPR | Non-local | V-fiber correlation | 
 
Predictions: 
- Bell violations via V-phase locking, not probability. 
- Protein "entanglement": helical V-twinning in dipeptides. 
- No tunneling barriers—only damped lift. 
 
The GSE provides a deterministic, geometrically complete framework aligning with critiques of 
probabilistic interpretations [1]. 
 
 
 
 
 
 
 

 
 
 



 

The GSE predicts a maximum CHSH violation of  due to V-damping saturation, 

in contrast to standard QM’s . This deviation is observable in high-fidelity entangled 
systems with coupling time ( t < 1/k ). 

 
 
 
 
 



 

 
 
A — Nonlinear geometric CUT-(i) (faithful to the paper’s description) 
 
Work on an extended state field defined on ordinary 3-space plus a perceptual coordinate . Let  
the (complex) usual wavefunction be written in real form as two real fields 
 
 

 
 
 
 

 
 
 
--- 
 
Define CUT-(i) as a (generally nonlinear) flow operator 
 
 

 
 
 

- The top two components  implement a  rotation in the ( (u,v) ) plane (the usual role of 
( i ). 
 

-  is a radial measure in the ( (u,v) ) plane   

  (the paper suggests  or any monotone function of radius), 
 

 
 
 



 

-  is the lift coefficient, and ( k > 0 ) is the damping coefficient on ( V ). 
 
 
Remarks: 
 

- This map is nonlinear because of . 
  The rotation block is linear; the lift component is radial and nonlinear. 
 
- Time evolution under the GSE replacement  

   becomes a system of real PDE/ODEs: 
 
   

   
   
 
- This exactly encodes the verbal description in the PDE: 
  rotation in ( (u,v) ) plus radial-proportional lift into ( V ) and linear damping of ( V ). 
 
--- 
 

Square of the operator (informal): because ( C ) is nonlinear,  is interpreted as 
composition: 
 

. 
 
(1st two components): 
 
 

 
 
--- 

 
 
 



 

 
B — Linearized / matrix representation (useful for algebraic analysis) 
 
--- 
 
If you want an operator with matrix algebra (spectrum, exponentials), embed to a 4-component 
real state so the lift becomes linear in that embedding. Introduce an independent scalar field ( 

r(x,t) ) representing the radius (or treat small-amplitude regimes and linearize  
about a background ( r0 )). Define the augmented state 
 
 

 
 
 
 

 
 
 
- The upper ( 2 X 2 ) block is the planar rotation generator 
   

   
 
- The lower-right scalar block (-k)  provides damping on ( V ). 
 
 
--- 

 
 
 



 

 
- The (4,3) entry \( \beta \) linearly maps the radius \( r \) into the \( V \)-component (linearized 
lift);** \( \beta \) corresponds to \( \alpha \) in the nonlinear model. 
 
--- 
 
Properties: 
 

- ( C ) is real but not skew-symmetric (because of the  and ( -k ) entries), so it is not an 
anti-Hermitian generator of unitary evolution.   
  That aligns with this paper’s claim: evolution is not purely unitary oscillation. 
 

- Compute (  ): 
 
   

   
   
 

- The ( 2 X 2 ) upper-left block equals . 
  (rotation twice gives (-1) in the plane), but the full ( 4 X 4 ) matrix includes nontrivial 
lower-right structure; therefore globally 
 
   

   
   
 

- The presence of nonzero ( k ) and  introduces dissipative / additive behavior in the ( V 
)-component 
  (consistent with the “additive lift” mechanism). 
 
 
Flow / exponential: the linearized time flow is   
 
 
 



 

 

 
 
Because ( C ) is block triangular apart from the rotation block, the exponential can be computed 
in closed form: 
 
- The rotation block exponentiates to a pure rotation in ( u,v):   
   

   
   
- The ( V )-component picks up an integrated driven/damped response from ( r(t) ).   
  Concretely, for constant ( r = r0 ) and scalar dynamics, ( V(t) ) solves the linear ODE   
   

   
   

  whose solution is the expected exponential relaxation to . 
 
--- 
 
C — Algebraic summary & consequences 
 
Not a replacement of ( i ) by a skew-Hermitian operator: 
CUT-(i) intentionally breaks skew-Hermiticity to add a geometric lift and damping. 
Algebraically, the result is not a faithful representation of the complex unit ( i ) in the ordinary 
sense because 
 

 
 
--- 
 
2. Two consistent viewpoints exist: 
 
- The nonlinear form (A) preserves the conceptual picture in the paper   
 
 
 



 

  (rotation + radius-dependent lift + damping). 
 
- The linearized matrix (B) gives you a handle to compute spectra, exponentials, Lyapunov 
functions, stability, and compare with unitary evolution. 
 
--- 
 
3. Dynamical interpretation: 
 
- Rotation in (u,v) still produces phase-like behavior (sin/cos) in that subspace. 
 
- Lift into ( V ) accumulates (additive) and damps, producing focusing/stabilization rather than 
persistent oscillation: this is why this paper claims no collapse but geometric focusing. 
 
--- 
 
D — You'll want the operator in a particular mathematical language and I’ll produce it explicitly: 
 

- (i) Operator on real Hilbert space :   
  write ( C ) as a (nonlinear) mapping and derive functional-analytic properties (domains, 
dissipativity, generators). 
 
- (ii) Finite-dimensional matrix toy model (4×4) for spectral analysis and numeric experiments   
  (I'll give exact eigenvalues, exponentials). 

- (iii) Differential operator form acting on    

  (e.g., replace  by  and write the coupled PDE system). 
 
- (iv) Geometric-algebra form: express CUT-(i)   

  as  where ( R ) is a bivector rotation generator and  is a lift operator — and 
derive commutator/anticommutator relations. 
 
--- 
 
I'll (A) give the explicit 4×4 matrix exponential and its eigenvalues for the linearized model with 
chosen parameters, and (B) derive the coupled PDE system for from a Hamiltonian-to-real-field 
mapping. 
 
 
 
 
 



 

 
 
 
0 – Torus geometry and coordinates (setup) 
 

Parametrize the spindle torus (the Eigen-knot base  by standard angular coordinates 

: 
 

 
 
 

 
 
Define the torus local metric quantities if needed: 
 
 

 
 
 
1 – Geometric CUT-(i) operator 
(coordinate / differential form) 
 
This version views CUT-(i) as a first-order differential operator on the torus tangent bundle plus 
a lift into the ( V )-direction. Write 
 

 
 
- Rotation on the amplitude plane (geometric almost-complex structure on the tangent of 
amplitude space) 
 

 
 
 



 

   
   
 

- V-lift (geometry dependent): lift coefficient  and a spatial weight    
  (curvature/metric dependent; captures where on the Eigen-knot the lift is strongest). Make it 
proportional to the local amplitude radius 
 
  

   
   
 
--- 
 
 

 
 
 
 
 
 
 
 
 
- Damping on ( V ): 
 

   
   

 
 
 



 

 
So the full differential action is 
 
 

 
 
--- 
 
Interpretation 
 

-  preserves local amplitude norm in the ( (u,v) )-plane (a phase rotation). 
 

-  adds an additive lift into ( V ) proportional to local amplitude and spatial weight ( f ) 

(encoding  geometry). 
 
- (-kV) relaxes (V) to equilibrium (stabilization → no collapse, only geometric focusing). 
 
  This is exactly the coordinate/differential form faithful to the paper’s description. 
 
--- 
 

2 – Nonlinear PDE system (GSE replacement of ) 
 

Replace  with  acting on the realified Hamiltonian system. For a 

Hamiltonian (H) acting on scalar complex wave , equivalently write the coupled PDEs for 
((u,v,V)). A compact example (including a usual kinetic potential Hamiltonian 

: 
 
 

 
 
 



 

 
 

If you prefer fully explicit (Laplace in torus coordinates), replace  by the torus Laplacian 

 built from (E, F, G). 
 
3 – Linearized / matrix embedding 
(useful for spectra & explicit exponentials) 
 
For analysis or numerics you often linearize   

around a background amplitude  so   

. Then the nonlinear lift   
becomes approximately linear in a chosen state   
vector. Use a three-component linear operator   
(or four if you keep an explicit radial degree). A   
convenient 3×3 linear toy operator at each   
spatial point: 
 

 
 
 

Here  is the linearized lift gain or   

 if you treat ( r0 = 1 ), and    
encodes torus geometry. 
 
--- 
 
Algebraic properties 

 
 
 



 

 
- Upper ( 2 X 2 ) block is ( J ) (rotation generator).   

  Its square equals . 

- Full  equals 
 
   

   
   
 
Exponential flow (linearized): 
 
   

   
   
--- 
 
4 – Compact operator notation 
(geometric-algebra style) 
 
If you prefer a geometric-algebra style operator splitting: 
 
 

 
 
 
- ( J ) is the pointwise complex-structure:   
  ( J(u,v) = (-v,u) ), 
 

-  is multiplication by the scalar field , 
 

 
 
 



 

-  maps , 

-  is projection onto the V-component. 
 
  This separates the skew action ( J ) and the   

  nonlinear lift  and dissipation . 
 
—----------------------- 
FUTURE TESTING  
 
5 – Remarks, choices, and next steps 
 
- Choice of ( f(\theta, \phi) ) matters. If you want faithful eigen-knot behavior, pick ( f ) 
proportional to local curvature or self-intersection density of the spindle torus (peaks where the 
torus self-intersects). 
 
- Nonlinearity is essential: purely linear skew-Hermitian operators cannot produce the 
additive-lift behavior described in your PDE. 
 
- Conservation / norm: choose a toroidal measure ( d\mu(\theta, \phi) ) and check continuity 
equations. With damping present, “energy” in ( u + iv ) can shift into ( V ) and then dissipate; 
pick ( k ) to control timescales. 
 
 
- Numerics: the linearized matrix ( C_{\text{lin}} ) is ready for spectral analysis and 
matrix-exponential numerics pointwise on the torus grid. If you want, I can (now) build a small 
numeric example (choose ( R, r, \alpha, k, \beta ) and a discrete ( (\theta, \phi) ) grid) and 
compute time evolution snapshots. 
 
--- 
 
If you want one concrete follow-up, pick one and I’ll do it immediately (no waiting): 
 
- (A) I’ll write the full coupled PDEs with torus Laplacian ( \Delta_{\theta,\phi} ) explicitly and 
show conservation/dissipation identities. 
 
- (B) I’ll compute eigenvalues / matrix exponential of ( C_{\text{lin}} ) for chosen numeric 
parameters and show the rotation + V-relaxation dynamics. 
 

 
 
 



 

- (C) I’ll map ( f(\theta, \phi) ) to a specific curvature function of the spindle torus (I can compute 
mean curvature ( H(\theta, \phi) ) and use that as ( f ). 
 
FUTURE TESTING END 
—------------------------------------ 
 
- Operator form: the geometric CUT-(i) is best modeled as   
 
   

   
   
 

- Algebraic identity:  on the extended space because the V-lift accumulates 
additively (and damping breaks skew-symmetry). However, on the planar ( (u,v) ) subspace the 

rotation squared is . 
 

- Dynamics: the linearized spectrum . Time evolution is a rotation in ( (u,v) ) 
plus a driven, exponentially relaxing ( V ) response — exactly “damped helical swarms.” 
 
- Choice of ( f ): mean curvature of the spindle torus is a physically plausible spatial weight; used 
numerically above and peaked where the torus geometry suggests topological tension 
(self-intersection area). You can replace ( f ) with any other geometric scalar (curvature, 
self-intersection density, localized bump) to model different Eigen-knot behaviour. 
 
 
2. Conservation / Dissipation identities 
(qualitative derivations) 
 

Define toroidal measure .   
Useful quantities: 
 

- local amplitude density    

 
 
 



 

- global amplitude norm ,   

- V total . 
 
(i) Rotation part preserves local amplitude. 
Pointwise   

. Thus   

the pure rotation ( J ) does not change . So   
any change of ( N(t) ) comes only from the   
Hamiltonian spatial terms or explicit coupling to   
( V ). 
 
(ii) Evolution of ( N(t) ). Multiply the first two PDEs   
by ( 2u ) and ( 2v ) respectively and add, integrate over   
the torus: 
 
 

 
 
 
(iii) Evolution of total V. 
 
 

 
 
 
(iv) A Lyapunov-like functional. Consider 
 

 
 
 
 
 



 

 
 
 
 
 
 
0. Notation & geometry 
 

- Torus (Eigen-knot base ) parameterization: 
 
   
  

 
   
 
- State at each point of the torus: 
 
  

   
 
- Linearized CUT-(i) toy operator (pointwise): 
 
   

   
 
 
 

3. Mean curvature  → spatial weight  
 

 
 
 



 

A physically plausible choice for the spatial weight in the V-lift is the torus mean curvature 

 (or a monotone function of it), because the PDE emphasizes self-intersection 
topological tension points. 
 
I computed the mean curvature numerically on the spindle torus for four representative angles 

 (symmetry makes ( H ) independent of  in the standard torus geometry). I normalized 

the curvature values to the interval ([0, 1]) to produce a practical  for the linearized 
operator. 
 
Sample numerical results (computed with ( R = 10; r = 15.85 )): 
 
(See table in next section) 
 
 
 
 
 
 
 

mean curvature  
 
| \( \theta \) | \( H(\theta) \) (numeric) | **normalized** \( f(\theta) \in [0, 1] \) | 
|-------------|---------------------------|-------------------------------------------| 
| \( 0 \)     | 0.05088810                | **1.00000000**                            | 
| \( \pi/2 \) | 0.03154574                | **0.88480103**                            | 
| \( \pi \)   | \(-0.11701583\)           | **0.00000000**                            | 
| \( 3\pi/2 \)| 0.03154574                | **0.88480103**                            | 
 
(Using the normalization   
\( f = \frac{(H - H_{\min})}{(H_{\max} - H_{\min})} \).) 
 
**Interpretation:** curvature peaks near \( \theta = 0 \) on this spindle geometry; the 
self-intersection / high-curvature region therefore gives strong V-lift as envisioned in the paper. 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
4. Linearized operator spectral example & short-time dynamics 
 

Take the linearized operator at a point (pointwise) with parameters  and ( k = 0.5 
). For three representative ( f ) values (from the table above) the pointwise operator and its 
eigenvalues have this form. 
 

Operator  at  (strong lift; ( f = 1 )) 
 
 

 
 
 

Operator at  (no lift; ( f = 0 )) 
 
 

 
 
 
 
Remarks about spectrum: 
 

- The rotation subspace gives purely imaginary pair  (oscillation), while the ( V ) channel 
contributes a real negative eigenvalue ( -k ) (dissipative). 

 
 
 



 

 

- Increasing the lift coupling  does not move the imaginary pair (they stay at 

) but mixes eigenvectors — physically the rotation persists while the ( V )-channel is a 
damped driven coordinate. 
 

Matrix exponential structure (illustration): the block structure makes  contain: 
 
- a standard rotation (cos, sin ) in the upper-left ( 2 X 2 ) block, 
 
- off-diagonal contributions in the third row encoding how rotating amplitude drives \( V \) 
(integrated, damped response), 
 

- a decaying factor  in the  diagonal entry. 
 
 

Short-time example (one-point, ): using ( t = 1 ) (time units where ), 
initial vector   

 (pure real amplitude, no ( V )),   

the state after time ( t = 1 ) for the operator with  was numerically: 
 

 
 

- ( (u, v) ) have rotated by angle 1 rad (  ), 
 

- ( V ) has accumulated a positive value  due to lift driven by the rotating 
amplitude and is partially damped by ( -k ). 
 
These numeric matrices and exponentials show the damped helical flow picture: rotation in ( (u, 
v) ) combined with a monotone, driven V-lift that relaxes with rate ( k ). 
 
What I computed (and how) 

 
 
 



 

 

1. Torus geometry & mean curvature  
 
   - Parametrized the spindle torus 
 
      

      
      
 
      

     . 
 

   Result:  has sharp negative spikes where the spindle self-intersects (these are 

the regions of highest geometric tension). I plotted  (for ) — see figure 1 

(mean curvature vs ). 
 
2. Operator linearization & Jacobian (local, pointwise) 
 
   - I used the local nonlinear ODE model (no Laplacian coupling): 
 
      

      
      
 
- Linearized (for spectral analysis) to the standard pointwise matrix 
 
   

 
 
 



 

   
   

- At the trivial equilibrium  the eigenvalues are 
 
   

   
   
  Interpretation: rotation in the  (u, v)  subspace persists (pure oscillation), while ( V ) dynamics 
is a dissipative scalar channel. This supports the “damped helical flow” picture. 
 

3. Parameter sweep  vs ( k ) at a representative strong-lift location ( f=1 ) 
 

   - I swept  and . For each pair I computed the 

eigenvalues of  and recorded the leading eigenvalue real part and the correlation time 

estimate  (finite when stable). 
 

- Result: the leading real part is always ( -k ) (the imaginary pair stays at ), so the 
correlation time is essentially ( 1/k ) (when the V-mode is the leading decaying mode). (Plot: 

heatmap of correlation time vs .) 
 

  — Practically: increasing damping ( k ) shortens the correlation time;  (lift gain) does not 
destabilize the imaginary pair but does drive larger V responses (it mixes eigenvectors). 
 
4. Grid simulation (decoupled local ODEs on a torus grid) 
 

   - I used a modest grid  in . I used the normalized mean curvature 

 as the lift weight. 
 

   - Initial condition: a localized Gaussian bump of amplitude in ( u ) near , 
zero ( v, V ). 

 
 
 



 

 

   -  Integrated the local nonlinear ODEs (no Laplacian coupling) up to . 
 
Results: 
 
- V accumulates where the initial amplitude overlaps regions with large ( f ) (i.e., curvature 

peaks). Snapshot of  after  shows localized V-growth at the initial 
bump and around the torus curvature peaks (see figure 3). 
 
- Time trace at the central point shows ( (u, v) ) rotating (sin/cos) while ( V ) grows toward an 

asymptotic value (driven by ) and relaxed by ( -kV ) — see figure 4. 
 
 
- Algebraic behavior: CUT-(i) modeled this way splits into a skew rotation ( J ) on the planar 

amplitude and a separate driven-damped scalar ( V )-channel. Algebraically  is not ( -I ) 
on the full augmented space because the ( V )-channel produces additive/dissipative terms — 
exactly as the PDE claims. 
 
- Stability (local): the trivial equilibrium is neutrally oscillatory in ( (u, v) ) and exponentially 
stable in ( V ) with rate ( k ). The time scale of V-decay (and therefore V-memory or correlation 
time) is essentially ( 1/k ). So their claim that damping sets correlation times is borne out in this 
local model. 
 

- Effect of lift gain  or : higher lift drives larger ( V )-amplitudes (bigger steady-state 

( V ), but it does not change the imaginary pair ; it mixes eigenvectors so ( V ) is more 
strongly driven by the rotating amplitude. 
 

- Geometry matters: using mean curvature as  concentrates V-lift at geometric 
tension points (self-intersections), consistent with the Eigen-knot intuition. 
 
 
limitations (transparency) 
 
1. No Laplace-Beltrami coupling in the simulation/stability analysis. 
 

 
 
 



 

   - The full PDE on the torus includes spatial derivatives (kinetic terms, diffusion-like operators) 
which couple grid points. I deliberately omitted the Laplace-Beltrami spatial coupling in the 
simulation and in the local linear stability analysis to keep the computations transparent and 
tractable. This gives a local picture (pointwise ODEs) which captures rotation + V-lift dynamics 
but does not capture dispersion, tunnelling-like effects, or spatially extended instabilities. 
 
2. Linearization nuances at ( u = v = 0 ). 
 

   - The V-lift is nonlinear (proportional to ). Its derivative at zero is singular; 
the linearization I used assumes replacing the radial nonlinearity by an effective linear coupling 

 (standard small-amplitude approximation). For large amplitudes the nonlinear dynamics 
are different. 
 
 
I used ħ = 1, α = 1, β = 1, k = 0.5   
as sensible defaults. You can provide   
other values and I'll recompute. 
 
Concrete algebraic outputs you can reuse 
 
- Linearized operator (pointwise): 
 
   

  . 
   
 
- Nonlinear local ODE used for simulations: 
 
   

   
   
 
 
 



 

 
- Mean curvature formula used (computed numerically from derivatives), normalized to produce 

. 
 
Figures I produced (you already saw them) 
 

1. Mean curvature  across  (spindle torus): reveals sharp geometric features 
(self-intersection points). 
 

2. Heatmap: correlation time  vs  at ( f = 1 ) (dominantly 
shows ( 1/k ) dependence). 
 

3. Snapshot of  after integrating the local nonlinear ODEs. 
4. Time evolution of ( u(t), v(t), V(t) ) for the central grid point. 

 
 
 



 

 

 
 
 



 

 
1) Geometry + Laplace–Beltrami on the spindle torus 
 
Torus parametrization (Eigen-knot): 
 
 

 
 
--- 
 
Tangent vectors and metric components: 
 
 

 
 
 

 
 

. 
 

 
. 
 
 
 



 

--- 
 

Laplace–Beltrami on scalar : 
 

 
 

 
 
2) The explicit coupled PDE system (GSE with Laplace–Beltrami kinetic term) 
 
Define real fields on the torus: 
 

 
 
--- 
 
Choose a usual Hamiltonian 
 

 
 

Real components of  are the standard real-imaginary splitting: 
 

 
 

 
--- 
 
 
 



 

We incorporate the CUT-(i) rotation and V-lift as separate terms  
(rotation ( J(u,v) = (-v, u) ) plus geometric lift and damping in ( V ). The GSE system (boxed) is 
then: 
 

 
 
Comments on terms: 
 
- The explicit (-v) and (+u) entries are the pointwise planar rotation coming from CUT-(i). 
 

- The bracketed pieces are the Hamiltonian-driven contributions (kinetic via  and 
potential). 
 

-  is your chosen torus-weight (mean curvature, self-intersection density, etc.).   

  The  entry is optional (set to zero unless coupling to a Hamiltonian in (V). 
 

- Units:  and (k) chosen to make  same units as . 
 
Special cases / simplifications: 
 
- If you omit the Hamiltonian terms on the RHS of the first two equations, 
  you retrieve the local rotate–lift ODE used in parts of your paper. 
 

- If you set ,  
  the rotation block alone recovers the usual planar phase rotation, but without a true ( i )-algebra 
because of the added degrees of freedom. 
 
3) Continuity equation and conservation identities (toroidal measure) 
 
Define the local amplitude density 
 
 
 



 

 
 

 
 
 

 
 
--- 
 
Current (on the surface) – natural generalization of the flat-space Schrödinger current: 
 

 
 
--- 
 
Then the continuity equation with respect to the toroidal measure 

 is 
 
$$ 

 
 

 
 
Remarks / derivation notes: 
 
- The factor 2 comes from differentiating 

   (but a conventional probability continuity is often written without the factor 
when you define ( J ) differently; the physically meaningful form is the divergence identity above 
— you can absorb constants by redefining ( J ).   

  If you define  then   
   

 
 
 



 

   
 

- The rotation term  cancels in the  combination  
  (so rotation preserves local amplitude), which matches the geometric picture. 
 
- The Laplace–Beltrami kinetic part produces the divergence form via integration by parts as in 
standard Schrödinger. If you include additional dissipative or source terms in the ( u, v ) 
equations, those will produce source/sink terms on the right-hand side. 
 
1) Total ( V )-mass (integrated form): 
 
From the ( V )-equation used earlier, 
 

 
 
 

 
 
2nd equation: 
 
Equation for total ( V )-mass  
(toroidal measure) 
 
Define the total ( V )-mass 
 

 
 
--- 
 

From the GSE ( V )-equation (written with  as in the main text) 
 
 

 
 
 



 

 
 
--- 
 

If you omit any explicit Hamiltonian coupling into ( V ) (set ) this 
simplifies to 
 

 
 
--- 
 

This is a linear inhomogeneous ODE for  
with time-dependent source ( S(t) ). Its integrating-factor solution is 
 
 

 
 
 
--- 
 

In the special case that ( S(t) ) approaches a constant  (or is constant),  
the steady-state total ( V )-mass is 
 
 

 
 
--- 
 

Pointwise steady state (set  in the PDE)   
gives the local equilibrium 
 
 
 
 



 

 

 
 
Lyapunov-type functional derivative (useful to argue stabilization) 
 
With 
 

 
 

 
 
 
--- 
 

If  and the sign/size of the source term  

 is controlled (e.g. ( V ) and  not persistently aligned to make 
the first term dominate),   

the  term enforces decay of   
and hence geometric stabilization / boundedness of solutions.   
This quantitatively explains the   
“damped helical swarm → focusing” heuristic in the paper. 
 
 
4) Numerical comparison plan: CUT-(i) GSE vs standard Schrödinger 
(harmonic-oscillator test) 
 

 
 
 



 

Below is a concrete, reproducible plan to compare dynamics under the standard Schrödinger and 
the GSE (CUT-(i)). I give discretization choices, observables, and expected outcomes. 
 
--- 
 
(A) Domain and discretization 
 
- Geometry: spindle torus with   
  ( R = 10, r = 15.85 ) (as in your PDF). 
 
- Parameter coordinates: 

   
 

- Grid:  (or ( 64 x 128 ) to start). 
 
- Time integrator: 
 
  - Standard Schrödinger: use Crank–Nicolson  

    (unitary and stable) for the complex wavefunction  with . 
 
  - GSE: use explicit RK4 or semi-implicit splitting   
    (rotation+Hamiltonian splitting is natural: exact rotation step + CN for Hamiltonian piece). 
 

- Time step:  (tune for stability).   
  Total simulated time ( T ) chosen to see several oscillations: e.g. ( T = 10 ). 
 

- Physical parameters: ,   

  harmonic potential  chosen as a small localized quadratic well on the torus (a 
“surface harmonic oscillator” — e.g. radial distance from a chosen center point on the torus’s 
surface). 
 

- CUT parameters:  as a starting point (matching numbers in your 
writeup). 
 
(B) Initial condition (Gaussian-like wavepacket on torus) 
 

 
 
 



 

- Standard test: a localized complex Gaussian   

  centered at  with momentum ,   

normalized to unit  under  measure. 
 
- Use the same initial real-imag split for GSE: 

  (or small random noise in ( V ) to see 
lift dynamics). 
   
 
(C) Observables to compute at each time (t) 
 
1. Global norm 

    
 

2. Expectation of position (on torus coordinates) — e.g.  (use (sin, cos) to avoid 
wrapping). 
 

3. Spatial variance (wavepacket spread) . 
 
4. Energy: kinetic + potential (for standard Schrödinger);   
   for GSE you can define an analogous functional. 
 
5. ( V )-field metrics: 

    
 
6. Cross-correlation between two initially entangled locations (if testing synchronization) — but 
that’s optional for the single-packet test. 
 
(D) Numeric methods specifics 
 

- Laplace–Beltrami: compute with spectral derivatives in  (FFT) after factoring 
metric coefficients, or finite-difference on the grid using the divergence form: 

 
 
 



 

  

 
 
- For GSE a split-step approach is natural: 
 
  a. Exact rotation step (pointwise): 
      
     

 
      
     OR incorporate rotation via RHS in RK4. 
 
  b. Hamiltonian step with CN (or explicit RK) using the Laplace–Beltrami. 
 
  c. ( V )-update: integrate   
      

      
      
     with an ODE solver (semi-implicit Euler is OK if ( k ) is not too small). 
 
(E) Comparison metrics & expected differences 
 
- Norm conservation: 
 
  - Standard Schrödinger should conserve   
    ( N(t) ) up to numerical error (CN gives good conservation). 
 
  - GSE: because of the added ( V )-channel and possible dissipative terms, ( N(t) ) may still be 
conserved if no direct ( u,v )-to-( V ) sink is present in your modeling; check your chosen 
coupling carefully.   
    If amplitude shifts into ( V ) or is dissipated via ( V ), you will observe ( N(t) ) decrease. 
 
- Wavepacket spreading: 
 
  - Standard Schrödinger: dispersive spreading 
    (Gaussian broadens unless bound by potential). 

 
 
 



 

 
  - GSE: rotation + lift tends to focus amplitude in toroidal layers (geometric focusing).   
    Expect reduced spreading and possible localization near curvature peaks (where ( f ) is large). 
 
--- 
 
- Phase behavior: 
 
  - Standard: complex phase evolves, interference patterns form. 
 
  - GSE: the planar rotation still creates periodic behavior in ( u, v ) but because of ( V ) coupling 
and damping you will see   
    accumulation of ( V ) correlated with amplitude; interference fringes may be damped or 
reorganized. 
 
- Energy: 
 
  - Standard Schrödinger: total energy conserved (again up to numerics). 
 
  - GSE: energy can flow into ( V ) and be dissipated by ( -k V ); energy expectation will 
generally decay toward geometric equilibria unless you set ( k = 0 ). 
 

- Qualitative hallmark: monitor .   

  Under GSE you should see ( V ) grow where  overlaps large  (curvature 
peaks), and then relax with rate ( k ).   
This is the unique signature of CUT-(i) dynamics. 
 
(F) Example parameter set (start here) 
 
 

 
 
--- 
 
(G) Diagnostics & plots to produce 
 
- ( N(t) ) (norm) and energy vs time for both models. 
 

 
 
 



 

-  (spatial spread) vs time. 
 

- Snapshots of  and  at representative times. 
 

- Time series at a point  of 

   to illustrate damped-helical motion. 
 
- If you run an entanglement-like two-site initial condition: 
  correlation coefficient of ( V ) between sites. 
 
(H) Expected outcomes summary 
 
- Standard Schrödinger: unitary oscillatory propagation, dispersion, conserved norm and energy. 
 
- GSE: rotation in ( (u,v) ) plus a driven, damped ( V ) channel that collects amplitude 
information and tends to geometrically focus amplitude;   
  norm/energy may transfer into/through ( V ) and dissipate (depending on model choices).   
  You should observe less dispersion and ( V )-peaks correlated with curvature in GSE runs. 

 
 
 


