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Abstract  

 
We present a numerical investigation of non-Abelian braid execution under stochastic 
perturbations using the Geometric Schrodinger Equation (GSE). Unlike conventional topological 
quantum computing approaches that rely on abstract braid equivalence and idealized adiabatic 
assumptions, the GSE introduces a deterministic geometric flow with an auxiliary stabilization 
channel. We demonstrate that braid execution can be realized as a dynamically attracting process 
rather than a fragile path-following procedure. Using an explicit braid word and continuous noise 
injection, we show bounded planar phase motion and exponential convergence in the lift 
dimension. These results indicate that topological equivalence can emerge as a geometric 
attractor, providing a control-theoretic foundation for robust braid execution in realistic noisy 
environments. 
 

Introduction 
 
Topological approaches to quantum computation propose encoding information in global 
properties of particle trajectories, most notably the braiding of non-Abelian anyons. In idealized 
models, braid operations are assumed to be intrinsically fault-tolerant because local perturbations 
cannot alter global topological classes. However, practical implementations face significant 
challenges: control noise, finite temperature effects, non-adiabatic transitions, and imperfect 
device geometries all introduce deviations from the idealized braid paths. 
 
This work addresses a core limitation of standard topological quantum computing frameworks: 
the absence of a dynamical stabilization mechanism. Traditional treatments classify braids 
algebraically but do not specify how physical systems are dynamically driven toward a desired 
braid class in the presence of noise. The Geometric Schrodinger Equation (GSE) offers an 
alternative perspective by embedding phase evolution within a deterministic geometric flow 

 



 

augmented by a stabilizing lift dimension. In this framework, braid execution is not merely 
symbolic but realized as an attracting trajectory in an extended state space. 
 
 

Braids and Non-Abelian Operations 
 

In braid group language, a braid is represented as a word composed of generators  and their 
inverses. For non-Abelian anyons, such braid words correspond to unitary operations acting on a 
computational Hilbert space. While topological invariance protects the abstract equivalence 
class, the physical realization of the braid requires continuous control of system parameters over 
time. 
 

Limitations of Static Topological Protection 
 
Standard approaches assume that as long as a braid is not topologically altered, errors remain 
benign. In practice, noise can cause leakage, unintended excitations, or deviations that are not 
automatically corrected by topology alone. This motivates the need for a dynamical mechanism 
that actively suppresses deviations and forces convergence toward the intended braid outcome. 
 

The Geometric Schrodinger Equation 
 
The GSE replaces the complex unit with a real geometric operator that induces planar rotation 
combined with lift and damping in an auxiliary dimension. The resulting dynamics resemble a 
damped helical flow: phase-like motion persists in the plane, while deviations are absorbed by 
the lift channel and relaxed via damping. This structure naturally suggests a mechanism for 
stabilizing operations that would otherwise rely on idealized assumptions. 
 
Model and Methods 
State Space and Variables 
 
We consider a state vector 
 

 
 
where (u,v) represent planar phase components and V is a lift variable responsible for 
stabilization. The planar subsystem undergoes rotational dynamics analogous to unitary phase 
evolution, while the lift dimension introduces controlled dissipation. 
 
 

 



 

Dynamical Equations 
 
The evolution equations consist of: 
 

●​ planar rotation with orientation determined by the braid generator, 
●​ lift proportional to planar radius, 
●​ linear damping in the lift channel. 

 
Stochastic noise is injected continuously into all channels to model realistic perturbations. 
Importantly, no noise suppression or error correction is applied externally; stability, if present, 
must arise from the intrinsic dynamics. 
 

Braid Specification 
 
We study the explicit braid word 
 

 
 
Each generator is implemented as a finite-duration control segment, with orientation determining 
the sign of planar rotation. This braid is nontrivial and representative of challenging operations in 
non-Abelian anyon models. 
 

Numerical Experiment 
 
Simulation Setup 
 
The system is initialized at (u,v,V) = (1,0,0). Each braid segment is executed over a fixed time 
interval, with continuous Gaussian noise applied to all state variables. Parameters are chosen 
such that the planar dynamics remain neutrally stable while the lift channel provides dissipative 
stabilization. 
 
Observables and Diagnostics 
 
We monitor: 
 

●​ the planar trajectory (u(t),v(t)), 

●​ the instantaneous radius  
●​ the lift variable V(t). 

 

 



 

Stability is assessed via boundedness of the planar radius and convergence of V to a steady-state 
value. 
 

Results 
 
Planar Phase Stability 
 
The planar trajectory remains confined to a narrow annulus around unit radius throughout the 
braid execution, despite continuous stochastic forcing. No secular growth or decay of the radius 
is observed, indicating that phase structure is preserved under noise. 
 
Lift-Dimension Convergence 
 
The lift variable exhibits rapid initial growth followed by exponential saturation to a stable 
equilibrium value. Small stochastic fluctuations persist near the asymptote, consistent with a 
noise-driven attractor. 
 

 



 

 

 



 

 
Figure 1.1 Noisy planar motion (u,v) (left) and lift-dimension convergence V(t) (right) during 
execution of the non-Abelian braid. 
 

Interpretation 
 
The coexistence of planar neutrality and lift stabilization demonstrates that the braid is executed 
as a dynamically attracting process. Deviations introduced by noise are absorbed into the lift 
channel and dissipated, preventing accumulation of error in the planar phase. 
 

Discussion 
 
These results suggest a reinterpretation of topological protection. Rather than relying solely on 
abstract equivalence classes, the GSE provides a concrete dynamical mechanism by which 
topological outcomes are enforced. The braid is not merely preserved; it is actively stabilized. 
 
This perspective bridges topology and control theory, offering a path toward implementing 
topological operations in realistic noisy hardware without invoking idealized assumptions. 
 

Conclusion 
 
We have shown that non-Abelian braid execution can be stabilized dynamically using the 
Geometric Schrodinger Equation. By embedding phase evolution within a lift-and-damp 
geometric flow, braid equivalence emerges as an attractor rather than an assumption. This 
approach opens new avenues for robust topological quantum operations and suggests that 
geometry-driven stabilization may play a foundational role in future quantum technologies. 
 

Mathematical Structure of the Geometric Schrodinger Flow 
 
In this section we formalize the mathematical framework underlying the Geometric Schrodinger 
Equation (GSE) as applied to non-Abelian braid execution under noise. The purpose is to make 
explicit the dynamical origin of the stabilization observed numerically and to distinguish the 
mechanism from purely topological or purely unitary constructions. 
 
Extended State Space 
 
The GSE is defined on an extended real state space 
 

 
 

 



 

where the planar components (u,v) encode phase-like degrees of freedom and the scalar $V 
represents a geometric lift variable. Unlike the conventional complex Schrodinger equation, no 
complex structure is assumed a priori. Instead, rotational behavior emerges from real-valued 
dynamics. 
 
Define the instantaneous planar radius 
 

 
 

Deterministic Flow 
 

For a fixed braid generator , the deterministic GSE flow is given by 

 
where: 
 

●​  is a rotation rate, 

●​  encodes the orientation of the braid generator (  or ), 

●​  controls the strength of geometric lift, 
●​ k > 0 is a damping coefficient. 

 
The planar subsystem (u,v) generates circular orbits with conserved radius in the absence of 
noise, while the lift equation defines a linear relaxation process driven by the instantaneous 
planar magnitude. 
 

Stochastic Perturbations 
 
To model realistic control noise, additive stochastic forcing is introduced in all channels: 

 

 



 

where  are independent zero-mean Gaussian noise processes with finite variance. 
 
This defines a stochastic differential system in which stability must arise dynamically rather than 
through idealized assumptions. 
 

Fixed Point and Attractor Structure 
 
Taking the expectation value over noise realizations and assuming bounded planar motion with 

, the lift equation admits a unique stable fixed point 
 

 
 
Linearization about this point yields exponential convergence with rate k, independent of braid 
length or generator ordering. This fixed point persists under stochastic forcing, producing a noisy 
attractor rather than a fragile equilibrium. 
 

Braid Execution as Piecewise Flow Composition 
 
A braid word 
 

 
 

is implemented as a time-ordered composition of flows, each applied over a finite interval  

with the corresponding sign  
 
The full braid trajectory is therefore a concatenation of stochastic geometric flows: 
 

 
 

where each  denotes the time-  flow generated by the GSE. 
 
Emergent Topological Robustness 
 

 



 

Crucially, while the planar subsystem alone is neutrally stable, the coupling to the dissipative lift 
variable renders the full system asymptotically stable in the extended space. Topological 
equivalence of braid outcomes thus emerges not as an assumption but as a property of the 
attractor structure of the dynamics. 
 
This mechanism differs fundamentally from traditional topological quantum computing schemes: 
braid robustness is enforced dynamically rather than postulated abstractly. The observed 
numerical stability therefore follows directly from the mathematical structure of the GSE. 
 
 

 


