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Abstract

We present a numerical investigation of non-Abelian braid execution under stochastic
perturbations using the Geometric Schrodinger Equation (GSE). Unlike conventional topological
quantum computing approaches that rely on abstract braid equivalence and idealized adiabatic
assumptions, the GSE introduces a deterministic geometric flow with an auxiliary stabilization
channel. We demonstrate that braid execution can be realized as a dynamically attracting process
rather than a fragile path-following procedure. Using an explicit braid word and continuous noise
injection, we show bounded planar phase motion and exponential convergence in the lift
dimension. These results indicate that topological equivalence can emerge as a geometric
attractor, providing a control-theoretic foundation for robust braid execution in realistic noisy
environments.

Introduction

Topological approaches to quantum computation propose encoding information in global
properties of particle trajectories, most notably the braiding of non-Abelian anyons. In idealized
models, braid operations are assumed to be intrinsically fault-tolerant because local perturbations
cannot alter global topological classes. However, practical implementations face significant
challenges: control noise, finite temperature effects, non-adiabatic transitions, and imperfect
device geometries all introduce deviations from the idealized braid paths.

This work addresses a core limitation of standard topological quantum computing frameworks:
the absence of a dynamical stabilization mechanism. Traditional treatments classify braids
algebraically but do not specify how physical systems are dynamically driven toward a desired
braid class in the presence of noise. The Geometric Schrodinger Equation (GSE) offers an
alternative perspective by embedding phase evolution within a deterministic geometric flow



augmented by a stabilizing lift dimension. In this framework, braid execution is not merely
symbolic but realized as an attracting trajectory in an extended state space.

Braids and Non-Abelian Operations

In braid group language, a braid is represented as a word composed of generators T'i and their
inverses. For non-Abelian anyons, such braid words correspond to unitary operations acting on a
computational Hilbert space. While topological invariance protects the abstract equivalence
class, the physical realization of the braid requires continuous control of system parameters over
time.

Limitations of Static Topological Protection

Standard approaches assume that as long as a braid is not topologically altered, errors remain
benign. In practice, noise can cause leakage, unintended excitations, or deviations that are not
automatically corrected by topology alone. This motivates the need for a dynamical mechanism
that actively suppresses deviations and forces convergence toward the intended braid outcome.

The Geometric Schrodinger Equation

The GSE replaces the complex unit with a real geometric operator that induces planar rotation
combined with lift and damping in an auxiliary dimension. The resulting dynamics resemble a
damped helical flow: phase-like motion persists in the plane, while deviations are absorbed by
the lift channel and relaxed via damping. This structure naturally suggests a mechanism for
stabilizing operations that would otherwise rely on idealized assumptions.

Model and Methods
State Space and Variables

We consider a state vector

®(t) = (u(t),v(t), V(t)),

where (u,v) represent planar phase components and V is a lift variable responsible for
stabilization. The planar subsystem undergoes rotational dynamics analogous to unitary phase
evolution, while the lift dimension introduces controlled dissipation.



Dynamical Equations

The evolution equations consist of:

e planar rotation with orientation determined by the braid generator,

e lift proportional to planar radius,

e linear damping in the lift channel.
Stochastic noise is injected continuously into all channels to model realistic perturbations.
Importantly, no noise suppression or error correction is applied externally; stability, if present,
must arise from the intrinsic dynamics.

Braid Specification

We study the explicit braid word
_ —1
=010, 01020109.

Each generator is implemented as a finite-duration control segment, with orientation determining
the sign of planar rotation. This braid is nontrivial and representative of challenging operations in
non-Abelian anyon models.

Numerical Experiment
Simulation Setup
The system is initialized at (u,v,V) = (1,0,0). Each braid segment is executed over a fixed time
interval, with continuous Gaussian noise applied to all state variables. Parameters are chosen
such that the planar dynamics remain neutrally stable while the lift channel provides dissipative
stabilization.
Observables and Diagnostics

We monitor:

e the planar trajectory (u(t),v(t)),

I . 2
e the instantaneous radius T(t) - us + v b

e the lift variable V(t).



Stability is assessed via boundedness of the planar radius and convergence of V to a steady-state
value.

Results
Planar Phase Stability
The planar trajectory remains confined to a narrow annulus around unit radius throughout the
braid execution, despite continuous stochastic forcing. No secular growth or decay of the radius
is observed, indicating that phase structure is preserved under noise.
Lift-Dimension Convergence
The lift variable exhibits rapid initial growth followed by exponential saturation to a stable

equilibrium value. Small stochastic fluctuations persist near the asymptote, consistent with a
noise-driven attractor.



Noisy planar motion (u,v)
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Figure 1.1 Noisy planar motion (u,v) (left) and lift-dimension convergence V(t) (right) during
execution of the non-Abelian braid.

Interpretation
The coexistence of planar neutrality and lift stabilization demonstrates that the braid is executed
as a dynamically attracting process. Deviations introduced by noise are absorbed into the lift
channel and dissipated, preventing accumulation of error in the planar phase.
Discussion
These results suggest a reinterpretation of topological protection. Rather than relying solely on
abstract equivalence classes, the GSE provides a concrete dynamical mechanism by which

topological outcomes are enforced. The braid is not merely preserved; it is actively stabilized.

This perspective bridges topology and control theory, offering a path toward implementing
topological operations in realistic noisy hardware without invoking idealized assumptions.

Conclusion

We have shown that non-Abelian braid execution can be stabilized dynamically using the
Geometric Schrodinger Equation. By embedding phase evolution within a lift-and-damp
geometric flow, braid equivalence emerges as an attractor rather than an assumption. This
approach opens new avenues for robust topological quantum operations and suggests that
geometry-driven stabilization may play a foundational role in future quantum technologies.

Mathematical Structure of the Geometric Schrodinger Flow
In this section we formalize the mathematical framework underlying the Geometric Schrodinger
Equation (GSE) as applied to non-Abelian braid execution under noise. The purpose is to make
explicit the dynamical origin of the stabilization observed numerically and to distinguish the
mechanism from purely topological or purely unitary constructions.

Extended State Space

The GSE is defined on an extended real state space

B(t) = (u(t),v(t), V(1) € R?,



where the planar components (u,v) encode phase-like degrees of freedom and the scalar $V
represents a geometric lift variable. Unlike the conventional complex Schrodinger equation, no
complex structure is assumed a priori. Instead, rotational behavior emerges from real-valued
dynamics.

Define the instantaneous planar radius

r(t) = \Ju()? + v(t)?.

Deterministic Flow

ot

For a fixed braid generator ¢ , the deterministic GSE flow is given by

U= —S; W,
U= S§;wu,

Ta}:ar—kV,

« w>0,

is a rotation rate,
-1
o« Si E {+ 1 T 1} encodes the orientation of the braid generator (gi or a; ),
« O 0 controls the strength of geometric lift,
e k>0 isadamping coefficient.

The planar subsystem (u,v) generates circular orbits with conserved radius in the absence of
noise, while the lift equation defines a linear relaxation process driven by the instantaneous
planar magnitude.

Stochastic Perturbations

To model realistic control noise, additive stochastic forcing is introduced in all channels:
U= —8; wv+ ny(t),
V= s;wu+ ny(t),

V=ar—kV+ny(t),



where TTus Moy IV are independent zero-mean Gaussian noise processes with finite variance.

This defines a stochastic differential system in which stability must arise dynamically rather than
through idealized assumptions.

Fixed Point and Attractor Structure

Taking the expectation value over noise realizations and assuming bounded planar motion with

<T> ~ T , the lift equation admits a unique stable fixed point

. omo
V_k'

Linearization about this point yields exponential convergence with rate k, independent of braid
length or generator ordering. This fixed point persists under stochastic forcing, producing a noisy
attractor rather than a fragile equilibrium.

Braid Execution as Piecewise Flow Composition

A braid word

B=ola ol € e {£1},

iyt

At

is implemented as a time-ordered composition of flows, each applied over a finite interval
. . .8 = €4,
with the corresponding sign ~ “i ¥

The full braid trajectory is therefore a concatenation of stochastic geometric flows:
— €n o~ ... €2 €1

where each” %i denotes the time- At flow generated by the GSE.

Emergent Topological Robustness



Crucially, while the planar subsystem alone is neutrally stable, the coupling to the dissipative lift
variable renders the full system asymptotically stable in the extended space. Topological
equivalence of braid outcomes thus emerges not as an assumption but as a property of the
attractor structure of the dynamics.

This mechanism differs fundamentally from traditional topological quantum computing schemes:
braid robustness is enforced dynamically rather than postulated abstractly. The observed
numerical stability therefore follows directly from the mathematical structure of the GSE.



